Fees and key information

Course type
Undergraduate
UCAS code
B231
Entry requirements
On this page

Why study this course?

This Pharmaceutical Science MSci is a four-year course that combines bachelor’s and master's levels of study. You’ll be taught about the methods used to develop safe drugs that are able to reach specific parts of the body with minimal side effects.

This course will give you the opportunity to explore regulatory frameworks that govern the progression of new chemical entities to the marketplace that will enable you to work safely in the mainstream pharmaceutical, biotech or healthcare and consumer industries. On graduation you will be able to demonstrate to future employers that you’re equipped to work ethically and professionally in the design of medicines for healthcare.

Our Pharmaceutical Science undergraduate degree course is also accredited by The Academy of Pharmaceutical Sciences (APS). Students will recieve a free membership.

This MSci degree is a four-year programme, developed to endow you with the knowledge and expertise to understand how modern pharmaceuticals are constructed for specific deployment and controlled release of therapeutic agents.

The course will combine elements of biology and chemistry to examine how drugs affect the human body. In your first year you’ll learn the fundamentals in both disciplines, as well as the fundamentals of lab-based work. After the first year you’ll study these topics in greater depth and have the opportunity to specialise in subjects that interest you, including inorganic chemistry, microbiology, advanced bioanalytical science, neuropharmacology and much more.

During your final year you will focus on an independent research project under the supervision of an academic who is an active researcher in contemporary drug delivery systems and emerging technologies.

All modules are taught by experts in their field and are supported by an online web-based learning environment accessible from outside the University at any time. Teaching is delivered through lectures, tutorials, seminars and practical workshops. You will also have the opportunity to liaise with academic mentors to fine tune your self-directed study.

Accredited by the APS

This course is accredited by The Academy of Pharmaceutical Sciences (APS) and students will recieve a free membership

Third in the UK for student satisfaction

Our pharmacology and pharmaceutical science courses are ranked third in the UK for student satisfaction in the Complete University Guide 2025

Engage in topics that interest you most

During your final year you will focus on an independent research project under the supervision of an academic who is an active researcher in contemporary drug delivery systems and emerging technologies

Course modules

The modules listed below are for the academic year 2024/25 and represent the course modules at this time. Modules and module details (including, but not limited to, location and time) are subject to change over time.

Year* 1 modules

Year 2 modules

Year 3 modules

Year 4 modules

Cell Biology (for Life Sciences)

This module currently runs:
autumn semester - Monday afternoon

(core, 15 credits)

A core module which provides students with an understanding of basic cell structures and an awareness of different cell types and relates the structure and activities of cell components to their functions and to cellular activities as a whole.
The second half of the module is concerned with biochemistry focusing on the properties of key biochemical molecules and their role in biochemical function.
The aims of this module are aligned with the qualification descriptors within the Quality Assurance Agency’s Framework for Higher Education Qualifications. Specifically, it aims to expose students to some of the key questions of cell biology concerning cell structure and intracellular activities. Provide students with practical experience in a range of laboratory-based biological techniques. Enhance students' ability to manage themselves and to develop organisational, critical and analytical skills which are applicable to the workplace.

Read full details

Fundamental Chemical Concepts

This module currently runs:
autumn semester - Monday morning

(core, 15 credits)

This module covers the fundamental concepts of inorganic/physical chemistry and mathematics needed as a foundation for students studying Chemical and Pharmaceutical Sciences. Students will undertake practice problem solving skills based on the material taught.

The aim of this module is to ensure you will develop key skills and knowledge in:
1. fundamental mathematical principles
2. key concepts of bonding and molecular shape
3. some aspects of the descriptive chemistry of the elements and your exposure to introductory concepts in physical chemistry
This module aims to provide you with the qualities and transferable skills necessary for employment requiring the exercise of some personal responsibility and mathematical competence.

Read full details

Fundamentals of Molecular Biology (for Life Sciences)

This module currently runs:
spring semester - Monday afternoon

(core, 15 credits)

The aims of this module are aligned with the qualification descriptors within the Quality Assurance Agency’s, Framework for Higher Education Qualification. This module aims to provide an overview of the organisation, expression, and replication of genetic information in prokaryotes and eukaryotes together with principles of Mendelian inheritance; examine the consequences of mutation on gene expression together with an introduction to techniques of gene analysis and manipulation. This module aims to provide students with the qualities and transferable skills necessary for employment requiring the exercise of some personal responsibility.

Read full details

General Chemistry

This module currently runs:
autumn semester - Thursday morning

(core, 15 credits)

The aims of this module are aligned with the qualification descriptors within the Quality Assurance Agency’s Framework for Higher Education Qualification. The module provides an introduction to core aspects of chemistry - concepts of naming and drawing chemical formulae, organic bonding, differing types of isomerism, moles, reaction processes, states of matter, and interactions between particles are enumerated. Students will undertake regular tests based on the material taught.

Read full details

Introduction to Laboratory Skills

This module currently runs:
autumn semester - Thursday afternoon

(core, 15 credits)

The module will introduce students to safe working practices in the laboratory environment (GLP), simple chemical techniques and laboratory record keeping also in keeping with GLP.

The aim of this module is to ensure that you will develop key skills and knowledge that will enable you:

  1. to be familiar with the laboratory environment and to develop basic lab practice: personal safety, awareness of others;
  2. to familiarise yourself with writing a scientific report: contemporary scientific record keeping, style, recording data, interpreting data and drawing appropriate conclusions from results;
  3. to carry out basic lab procedures safely – handling and assembly of ‘quickfit’ apparatus; handling, purification and routine analysis of chemicals;
  4. to be familiar with the learning resources and support facilities available within the Learning Centre that will assist you with your personal and professional development;
  5. to develop transferable skills that will enable you to derive maximum benefit from your chosen course of study.
Read full details

Introduction to Organic Chemistry

This module currently runs:
spring semester - Thursday morning

(core, 15 credits)

The module is concerned with the fundamental and basic chemical concepts within the context of Organic Chemistry and starts to develop the more specialist knowledge of organic reactions required for later modules of organic chemistry.

The aim of this module is to ensure you will develop key skills and knowledge in:
1. understanding organic chemistry nomenclature.
2. identifying the types of reactions that are taking place.
3. recognising how reaction mechanisms work.
4. developing synthetic routes to simple structures.

Read full details

Key Principles in Chemistry

This module currently runs:
spring semester - Monday morning

(core, 15 credits)

This module covers inorganic and physical chemistry needed for students studying Chemical and Pharmaceutical Sciences. Students will undertake an assessed practical and practice problem solving skills based on the material taught.

The aim of this module is to ensure you will develop key skills and knowledge in:
1. inorganic chemistry, including the p-block, transition metal chemistry and magnetism.
2. essential physical chemistry topics of thermodynamics and electrochemistry
This module aims to provide students with the qualities and transferable skills necessary for employment requiring the exercise of some personal responsibility and enhancing analytical skills

Read full details

Laboratory Techniques with Data Handling

This module currently runs:
spring semester - Thursday afternoon

(core, 15 credits)

This module further develops the practical abilities of the student and the ability to record and process increasingly complex data. The module reinforces the importance of an appreciation of the theoretical principles underlying the procedures that will be investigated in the laboratory and in workshops. Students will also be expected to reflect on their personal and professional development throughout this module.

The aim of this module is to ensure that you will develop key skills and knowledge that will enable you to:

  1. enhance your practical skills in the areas of synthesis, purification and characterisation of products;
  2. enhance your skills in data recording, processing and appropriate analyses of laboratory results;
  3. understand the concepts that are associated with a variety of analytical processes routinely used in a laboratory;
  4. to be more aware of the parameters that govern chemical processes (on small and large scales).
Read full details

Organic Ring Systems

This module currently runs:
spring semester - Tuesday afternoon

(core, 15 credits)

This module relates the physical and chemical behaviour of polyfunctional cyclic organic compounds and biomolecules to their structures and electronic properties. Taught classes will be reinforced by practical exercises and spectroscopic problems.

Read full details

Organic Unsaturated Molecules

This module currently runs:
autumn semester - Tuesday afternoon

(core, 15 credits)

This module relates the physical and chemical behaviour of polyfunctional acyclic organic compounds and biomolecules to their structures and electronic properties. Taught classes will be reinforced by practical exercises and spectroscopic problems

Read full details

Principles of Pharmaceutical Science and Drug Delivery

This module currently runs:
spring semester - Tuesday morning

(core, 15 credits)

This module will equip students with a fundamental understanding of drug preformulation/formulation and different routes of administration. Throughout the module students will develop an ability to simulate data important to the subject matter.

This module aims to equip students with information on how to (a) preformulate drugs – medicines (b) explain kinetic processes involving medicines (c) understand how various pharmaceutical formulations can exert different biological outcomes. Understanding and appreciating the physiological aspects of the human body and physicochemical properties of drugs are essential to explaining how these processes affect the behaviour of different medicines.

Read full details

Principles of Pharmacodynamics

This module currently runs:
autumn semester - Tuesday morning

(core, 15 credits)

This module will equip students with a fundamental understanding of the actions and fate of drugs in the human body. Throughout the module students will develop an ability to collect, manipulate and interpret experimental data important to the subject matter.

This module aims to equip students with information on how formulated drugs – medicines, (a) get into the body (b) get around the body (c) how they act on the body and (d) how they get out of the body. Understanding and appreciating the physiological aspects of the human body and physicochemical properties of drugs are essential to explaining how these processes affect the behaviour of different medicines.

Read full details

Quantitative Analysis

This module currently runs:
autumn semester - Wednesday afternoon

(core, 15 credits)

Description: This module will develop problem solving and report writing skills in qualitative analytical chemistry and will enable students to identify analytical substrates on the basis of combined analytical results from a variety of sources. Key areas to be explored are principles of analysis, chromatographic separation techniques, and electroanalysis. The aims of this module are aligned with the qualification descriptors within the QAA’s the Quality Assurance Agency’s, Framework for Higher Education Qualifications.

Read full details

Spectroscopic Methods

This module currently runs:
spring semester - Wednesday afternoon

(core, 15 credits)

Description: This module will develop problem solving and report writing skills in qualitative analytical chemistry and to enable students to identify analytical substrates on the basis of combined analytical results from a variety of sources.

Read full details

Coordination and solution chemistry of d and f block complexes

This module currently runs:
autumn semester - Wednesday morning

(option, 15 credits)

The module aims to develop an understanding of the relationships between structure, bonding and reactivity of metal compounds and complexes in the d- and f- block. The knowledge gained will give students an understanding of the solution characteristics of complexes and give them the knowledge to predict properties of example complexes. It will also bring real world examples of metals in medicine and the properties that make them important in therapy of patients. The practical aspects of the module will enable students to acquire skills and experience of preparative, analytical and instrumental methods which are essential to inorganic chemistry. The module offers students from other related BSc degrees to increase their knowledge of inorganic chemistry. Inorganic chemistry is a key discipline, it builds and reaffirms, whilst allowing students to appreciate the whole of the periodic table. The module is assessed via a poster and exam giving students the opportunity to display content and discuss their findings in a verbal manner whilst also displaying concise written scientific information in an attractive manner.

Read full details

Human Immunity

This module currently runs:
spring semester - Thursday morning

(option, 15 credits)

This module provides an introduction to physiological, cellular and molecular fundamentals of human immunology. It includes consideration of innate and acquired immune defences, genetic variation and immune defence, and immune responses or involvement in a range of pathological conditions. The aims of this module are aligned with the qualification descriptors within the Quality Assurance Agency’s, Framework for Higher Education Qualifications.
The module integrates the knowledge and skills acquired from other modules and encourages independent learning through the access of information using appropriate laboratory, primary and secondary sources, and informatics resources. It develops competence in laboratory skills through practical work, and in scientific writing. It aims to develop students’ qualities and transferable skills necessary for employment including developing ability to solve problems and gather and interpret data to inform a focussed theme and writing reports. Moreover, students have an opportunity to develop self-management employability skills by engaging fully with the learning material and opportunities made available to them, and by continually reflecting on their progress through the module using the regular feedback opportunities available to them.

Read full details

Metabolism

This module currently runs:
autumn semester - Wednesday morning

(option, 15 credits)

This module focuses on understanding key principles of metabolism. These principles are illustrated through study of the major metabolic pathways. How metabolism interacts with the nutritional environment is discussed throughout the module.
The aims of this module are aligned with the qualification descriptors within the Quality Assurance Agency’s Framework for Higher Education Qualifications This module aims to provide an understanding of the principles of metabolism encourage an appreciation of the diversity and interconnection of metabolic pathways, and to stimulate an understanding of the applicability of metabolism in a broad range of biological context. This module will also provide students with the qualities and transferable skills necessary for employment requiring the exercise of some personal responsibility and decision making

Read full details

Microbiology

This module currently runs:
spring semester - Wednesday morning

(option, 15 credits)

This module investigates the key metabolic pathways in eukaryotes and prokaryotes and investigates how these pathways, in different organisms, satisfy energy requirements for growth and reproduction using the nutrients in their surroundings. This module also examines the intrinsic and extrinsic factors which regulate microbial growth and development.
The aims of this module are aligned with the qualification descriptors within the QAA’s the Quality Assurance Agency’s, Framework for Higher Education Qualifications. It provides students with the opportunity to study the nutritional requirements for microbial growth and the intrinsic and extrinsic factors which regulate microbial growth and development. This module aims to provide students with the qualities and transferable skills necessary for employment requiring the exercise of personal responsibility and decision-making. Students will be encouraged to engage meaningfully through the curriculum, to enable them to reflect on, plan and review their own personal and academic skills. This will enable students to develop well supported claims to their achievements and be able to articulate these to others. The University will facilitate students in the recognition and recording of their achievements.

Read full details

Molecular Biology

This module currently runs:
autumn semester - Friday morning

(option, 15 credits)

This module will enable students to extend their understanding of the principles of molecular biology in eukaryotic and prokaryotic organisms, with emphasis on understanding mechanisms of gene expression, genome structure, variation and replication, and genetic inheritance and genetic causes of disease. The aims of this module are aligned with the qualification descriptors within the Quality Assurance Agency’s, Framework for Higher Education Qualifications.


The module integrates the knowledge and skills acquired from other modules and encourages independent learning through the access of information using appropriate laboratory, primary and secondary sources, and informatics resources. It develops competence in laboratory skills through practical work, and in scientific writing. It aims to develop students’ qualities and transferable skills necessary for employment including developing ability to solve problems and gather and interpret data to inform a focussed theme and writing reports. Moreover students have an opportunity to develop self-management employability skills by engaging fully with the learning material and opportunities made available to them, and by continually reflecting on their progress through the module using the regular feedback opportunities available to them.

Read full details

Solid State and Organometallic Chemistry

This module currently runs:
spring semester - Wednesday morning

(option, 15 credits)

The module aims to develop an understanding of the relationships between structure and bonding in organometallic complexes and the 18 electron rule. Solid state characterisation will also be taught showing how it is a powerful tool to understand crystal lattice systems. The practical aspects of the module will enable students to acquire skills and experience of preparative, analytical and instrumental methods which are essential to inorganic chemistry. The module offers students from other related BSc degrees to increase their knowledge of inorganic chemistry. Inorganic chemistry is a key discipline throughout the degrees, it builds and reaffirms whilst allowing students to appreciate the whole of the periodic table. The module is assessed via a laboratory report, a practical quiz and a summative exam giving students the opportunity to complement their lectures and taught material with laboratory learning. Laboratory work is emphasised throughout the module as a key learning objective.

Read full details

Formulation and Quality Assurance of Solutions, Suspensions and Emulsions

This module currently runs:
autumn semester - Monday afternoon

(core, 15 credits)

This module will introduce students to scientific principles underlying the formulation, industrial manufacture and quality assurance of commonly used pharmaceutical solutions, suspensions and emulsions. Students will learn a body of technical knowledge and acquire practical skills in the design, manufacture and quality evaluation of various pharmaceutical products.

The module aims to consolidate and expand on concepts introduced at prerequisite module CY5083 to ensure students have (a) a solid scientific grasp of physicochemical and biopharmaceutical factors that influence formulation, manufacture and stability of pharmaceutical solutions, suspensions and emulsions (b) enable students to understand the characteristics and rationalise the design of major pharmaceutical drug dosage forms highlight in the latter (c) expand the students’ practical skills in pre-formulation studies, physical and chemical testing, bioavailability considerations, excipient selection and production methods to ensure quality, safety and drug efficacy (d) encourage critical awareness of the pharmacopoeia and regulatory requirements associated with the manufacture of pharmaceutical solutions, suspensions and emulsions.

Read full details

Formulations and Quality Assurance of Solids and Semi-solids

This module currently runs:
spring semester - Monday afternoon

(core, 15 credits)

This module will introduce students to scientific principles underlying the formulation, industrial manufacture and quality assurance of commonly used pharmaceutical solid and semi-solid formulations. Students will learn a body of technical knowledge and acquire practical skills in the design, manufacture and quality evaluation of various pharmaceutical products.

The module aims to consolidate and expand on concepts introduced at prerequisite module CY5083 to ensure students have (a) a solid scientific grasp of physicochemical and biopharmaceutical factors that influence formulation, manufacture and stability of pharmaceutical solid and semi-solid products (b) enable students to understand the characteristics and rationalise the design of major pharmaceutical drug dosage forms highlight in the latter (c) expand the students’ practical skills in pre-formulation studies, physical and chemical testing, bioavailability considerations, excipient selection and production methods to ensure quality, safety and drug efficacy (d) encourage critical awareness of the pharmacopoeia and regulatory requirements associated with the manufacture of pharmaceutical solid and semi-solid.

Read full details

Medicinal Chemistry

This module currently runs:
spring semester - Thursday morning

(core, 15 credits)

The aims of this module are aligned with the qualification descriptors within the Quality Assurance Agency’s Framework for Higher Education Qualifications.

This module will enable students to develop an understanding of the various strategies used in drug design and the molecular mechanisms by which drugs act in the body.

The module aims to: deepen students’ awareness of the major influence chemistry has had on the treatment of various diseases and debilitating conditions; enable students to assess critically the methodologies and strategies that govern whether or not a synthetic compound (i.e. new chemical entity, NCE) may be regarded as a good drug candidate.

Read full details

Research Project

This module currently runs:
all year (September start) - Wednesday afternoon

(core, 30 credits)

This module will enable students to demonstrate the skills necessary to carry out a scientific programme requiring significant research. It will allow students to demonstrate the final development of their subject knowledge, skills and understanding through extended research based on laboratory, literature or field work, or meta-analysis of databases. This research will lead to the presentation of a detailed written report and a Powerpoint presentation of results. This module aims to encourage the student to reflect and build upon their subject knowledge and expertise by means of a specific investigation requiring significant research; develop the skills necessary to plan, carry out, analyse and report upon the results of an experimental or analytical programme on a scientific topic; allow the student to demonstrate that s/he has achieved a high level of personal development through working independently with the minimum necessary supervision; allow the student to demonstrate their understanding and application of safe and considerate working practices, particularly within the laboratory.

Read full details

Advanced Organic Chemistry

This module currently runs:
autumn semester - Thursday morning

(alternative core, 15 credits)

Description: This module builds upon, and extends, material taught in the 2nd year, specifically in organic chemistry. It provides students with a deeper understanding of organic chemical reactivity.

Read full details

Natural Products

This module currently runs:
autumn semester - Thursday morning

(alternative core, 15 credits)

The aims of this module are aligned with the qualification descriptors within the Quality
Assurance Agency’s, Framework for Higher Education Qualifications.
This module aims to enable students to develop an understanding of the chemical components of a range of natural products (e.g. terpenes, plant glycosides, alkaloids, carbohydrates, peptides/proteins and nucleic acids), as well as the methods used for their appropriate extraction and quantitation. It will also show students how to deploy a range of spectroscopic techniques for structure elucidation of some of these vitally important molecules. In addition, the module aims to develop students understanding of both the biosyntheses, and synthetic methodologies, involved in deriving the active constituents of drug-like molecules found in nature (e.g. in pharmacognosy) and provide them with contexts that will allow them to develop problem solving skills in this area. Contemporary topics of importance in natural products such as applications of combinatorial chemistry, photochemistry (industrial-scale) and semi-synthetic drug development will also be introduced via lectures, tutorials and workshops and the
students’ practical skills will be enhanced by exposure to specific techniques from
modern natural product isolation protocols. In addition, the module aims to provide students with the qualities and transferable skills necessary for employment. They will be required to exercise initiative and personal responsibility, as well as decision-making
in complex and unpredictable contexts. Finally, the module aims to provide students with the learning ability needed to undertake appropriate further training of a professional or equivalent nature.

Read full details

Advanced Bioanalytical Science

This module currently runs:
spring semester - Friday morning

(option, 15 credits)

The aims of this module are aligned with the qualification descriptors within the Quality Assurance Agency’s, Framework for Higher Education Qualifications.
The module aims to develop students’ understanding of advanced bioanalytical techniques and to enable students to determine which analytical technique is suitable for a particular type of sample. The module will reinforce and build on analysis skills introduced in CH5007 and provide an opportunity for students to interpret more advanced data, particularly spectra and chromatograms and to solve defined problems. The students will gain practical experience in selected analytical techniques.
This module aims to provide students with the qualities and transferable skills necessary for employment requiring the exercise of initiative and personal responsibility and decision-making in complex and unpredictable contexts. The module should also help students to gain the learning ability needed to undertake appropriate further training of a professional or equivalent nature.

Read full details

Advanced Inorganic Techniques

This module currently runs:
autumn semester - Thursday afternoon

(option, 15 credits)

This module aims to enable students to develop an understanding of the relationship between structure, bonding and reactivity of organometallic and main group compounds. In addition, the module aims to develop students understanding of modern characterisation in solid state chemistry. Allied to this, the module will develop an awareness of the spectroscopic techniques available to an inorganic chemist and provide them with contexts that will allow them to develop problem solving skills in this area. In addition, the module aims to provide students with the qualities and transferable skills necessary for employment. They will be required to exercise initiative and personal responsibility, as well as decision-making in complex and unpredictable contexts.

Read full details

Neuropharmacology

This module currently runs:
spring semester - Monday morning

(option, 15 credits)

The aim of this module is to provide students with an appreciation of neurotransmitter receptor physiology, with the aim of using this to gain understanding of the mechanism of action of drugs which are used to treat key neurological disorders of the central nervous system including depression, schizophrenia and Alzheimer’s disease. Students will also gain experience at generating, handling and analysing neuropharmacological data. The module provides students with fundamental pharmacological knowledge and skills.

Read full details

Programming for Science

This module currently runs:
spring semester - Friday morning

(option, 15 credits)

The aim of this module is to provide students with an appreciation of how to use MATLAB® and how this can be applied in the sciences. Students will also gain experience at handling and analysing scientific data. Students will also learn how to plot data, have the opportunity to make GUIs (general user interfaces) and even make interactive games as a fun way to educate others about their area of scientific study. The module will be highly interactive allowing students to develop confidence in writing MATLAB scripts. The module provides students with fundamental computer programming skills which will give them the tools to use other computer programming languages such as Python and C. Students will also develop their logic and problem solving skills.

Read full details

Sandwich Placement

This module currently runs:
all year (September start)

(option, 30 credits)

One year of work based learning. Work experience based full-time in an organisation with roles relevant to the academic programme of study and at an appropriate level of responsibility. Relevant organisations include; NHS, research, industrial and private medical laboratories. Learning would be driven by practical experience in the work place. Progress and development will be assessed against an agreed framework of objectives as defined in the learning agreement. For part-time students in appropriate employment they can complete the module over an extended period during their degree rather than take a year out.

The aims of this module are aligned with the qualification descriptors within the Quality Assurance Agency’s, Framework for Higher Education Qualifications.

The module aims to: Provide experience of the technical expertise, knowledge, pressures and opportunities within the context of the scientific workplace; increase awareness of the scope, structure and operation of the host organisation, from a career perspective; develop generic competencies as outlined in the registration portfolio or work based learning portfolio; maximize employability by developing the student’s ability to work (at a certain threshold level) in a professional capacity.

Read full details

Systems Pharmacology

This module currently runs:
autumn semester - Monday morning

(option, 15 credits)

The aim of this module is to provide students with an understanding of how drugs are used to treat key diseases, including cardiovascular conditions, cancer, and infection, and gives students experience at generating and handling pharmacological data. The module provides students with fundamental pharmacological knowledge and skills.

Read full details

Topics in Inorganic Chemistry

This module currently runs:
spring semester - Thursday afternoon

(option, 15 credits)

This module will introduce contemporary topics of importance in inorganic chemistry, such as supramolecular chemistry, namely catenanes and rotaxanes and host guest chemistry. Through peer reviewed journals the students will create a word board of key concepts to be discussed. Students practical skills will be enhanced by exposure to coordinating metals in motifs akin to bioinorganic chemistry. Crystallography of proteins and larger molecules will also be taught along with problem solving skills enabling them to process key data. Main group will be discussed in relation unusual bonding modes and the relationship to clusters of atoms.

Read full details

Work Placement (for Life Sciences)

This module currently runs:
spring semester
autumn semester

(option, 15 credits)

Description: This module focuses on extending students' learning experience by providing them with an opportunity to tackle real-life problems, appropriate to their academic level, by undertaking a short period of professional activity in the workplace. The placement needs to be approved prior to being undertaken, by the work placement coordinator. It is expected that the student should work for 140 hours, for which they will be required to provide evidence (completed in the summer or part-time over the Autumn or Spring semester). The suitability of the opportunities will be assessed on an individual basis. Where required, students will be supported in finding suitable opportunities and with all aspects of their job search and applications. However, it is the students’ responsibility to obtain suitable employment, and roles cannot be guaranteed. DBS checks and or Hep B vaccination may be required for some placements (NHS or School-based).
This module aims to provide the student with an opportunity to: Increase their personal and professional development and gain experience of the culture and structure of a working environment; evaluate, and critically reflect on, the workplace as well as the student's role and contribution to it; and to apply previously-learnt academic knowledge to the task in hand. Explore employment options and consider future career plans. It will also ensure that suitable health and safety requirements are in place and the work activity will be approved by the module team in advance.

Read full details

Advanced Drug Formulation Technologies

This module currently runs:
autumn semester - Tuesday afternoon

(core, 20 credits)

This module is designed to provide students with (a) an in-depth understanding of current and (b) emerging formulation technologies for optimising dosage forms, (c) the mechanisms by which these therapeutic agents exert their mode of action (d) and the various routes of drug administration that can be exploited to maximise drug interactions. Also, it will aid students with an understanding of how to identify and critically evaluate the key factors and stages involved in designing formulations; enable students to appreciate the importance of the manufacturing process and the stability of drug formulation in the overall development of new products, and to enable students to examine selected ethical issues surrounding drug development and delivery.

Read full details

Drug Delivery Systems

This module currently runs:
spring semester - Tuesday afternoon

(core, 20 credits)

This module provides an advanced understanding of drug delivery systems technologies.
This module is designed to provide students with (a) an in-depth understanding of the design of contemporary drug delivery systems, (b) the mechanisms by which these therapeutic agents exert their mode of action, (c) and the various routes of drug administration that can be exploited to maximise their time-specific and site-specific targeted drug delivery. Also, it will aid students with an understanding of the principles which describe and control the effective delivery of drugs from their delivery systems to target sites; to enable students to appreciate the importance of the manufacturing process and the stability of drug formulation in the overall development of new products, and to enable students to examine selected ethical issues surrounding drug development and delivery.

Read full details

Research Project for Pharmaceutical Science

This module currently runs:
all year (September start)

(core, 60 credits)

This module provides the opportunity to apply previously acquired knowledge and skills to a pharmaceutical research problem, and to undertake, critically evaluate, reflect, and report on, an individual experimental programme.

This module aims to:

1.Provide the students with experience of more advanced experiments in research methods.

2.Allow students to develop into independent researchers.

3.Allow students to prepare novel materials, and/or make measurements of the physical and chemical properties of novel materials and/or investigate educational issues related to pharmaceutical science teaching;v

Read full details

Drug Discovery Technology

This module currently runs:
autumn semester - Monday afternoon

(option, 20 credits)

The aim of this module is to provide an up-to-date understanding of chemical and biological technologies used in the drug discovery process.

This module aims to provide:

  1. students with knowledge and understanding of how chemical and biological technologies are used in drug discovery process
  2. an opportunity for extensive in-depth research and critical assessment of a topical issue
Read full details

Pharmaceutical Analysis

This module currently runs:
spring semester - Monday afternoon

(option, 20 credits)

This module is designed to provide you with an up-to-date understanding of the range of analytical techniques in use in the pharmaceutical industry and the QA processes that they underpin. By undertaking this module you will:

  1. gain a more in depth understanding of the principles of the major analytical techniques.
  2. be able to evaluate and assess the appropriateness of analytical methods for specific applications.
  3. gain an understanding of the role of quality assurance procedures in pharmaceutical analysis.
Read full details

Join our next virtual open event on Thursday 23 January at 5pm

Book your place

Course details

In addition to the University's standard entry requirements, you should have:

  • a minimum of 112 points from A levels including a C in Chemistry, or a minimum of 112 UCAS points from an equivalent Level 3 qualification eg BTEC Level 3 Extended Diploma/Diploma, Advanced Diploma, Progression Diploma or Access to HE Diploma with 60 credits
  • GCSE English and Mathematics at grade C/4 or above (or equivalent)

You will be considered on a case-by-case basis if you hold relevant professional qualifications or extensive professional experience.

You will also be considered if you are currently completing Level 4 (Year 1) or 5 (Year 2) from an appropriately matched Pharmaceutical Science BSc course and would like to transfer to an MSci.

If you don’t have traditional qualifications or can’t meet the entry requirements for this integrated master’s degree, you may still be able to gain entry by completing Pharmaceutical Science (including foundation year) BSc (Hons).

Accreditation of Prior Learning

Any university-level qualifications or relevant experience you gain prior to starting university could count towards your course at London Met. Find out more about applying for Accreditation of Prior Learning (APL).

English language requirements

To study a degree at London Met, you must be able to demonstrate proficiency in the English language. If you require a Student visa (previously Tier 4) you may need to provide the results of a Secure English Language Test (SELT) such as Academic IELTS. This course requires you to meet our standard requirements.

If you need (or wish) to improve your English before starting your degree, the University offers a Pre-sessional Academic English course to help you build your confidence and reach the level of English you require.

You’ll be assessed via a range of methods, including presentations, log books, portfolio submissions, viva, in-class tests and unseen examinations.

In Year 4 your main focus will be the investigative project, which will build on the knowledge and skills you’ve gained in the previous three years and be assessed via a dissertation and a viva.

Following successful completion of this course you will be able to go into roles relating to:

  • the formulation and manufacture of pharmaceuticals
  • pharmacovigilance
  • drug safety
  • regulatory affairs

Our chemistry and pharmaceutical sciences graduates have gone on to careers as research technicians, science teachers, clinical trials assistants, pharmacy technicians, sterile specialists and product development technologists at companies such as Batelle UK, St Pancras Clinical Research, Teva and Unilever.

If you study your undergraduate degree with us, as a graduate of London Met, you'll be entitled to a 20% discount on a postgraduate course if you continue your studies with us.
* exclusions apply

Please note, in addition to the tuition fee there may be additional costs for things like equipment, materials, printing, textbooks, trips or professional body fees.

Additionally, there may be other activities that are not formally part of your course and not required to complete your course, but which you may find helpful (for example, optional field trips). The costs of these are additional to your tuition fee and the fees set out above and will be notified when the activity is being arranged.

Discover Uni – key statistics about this course

Discover Uni is an official source of information about university and college courses across the UK. The widget below draws data from the corresponding course on the Discover Uni website, which is compiled from national surveys and data collected from universities and colleges. If a course is taught both full-time and part-time, information for each mode of study will be displayed here.

How to apply

If you're a UK applicant wanting to study full-time starting in September, you must apply via UCAS unless otherwise specified. If you're an international applicant wanting to study full-time, you can choose to apply via UCAS or directly to the University.

If you're applying for part-time study, you should apply directly to the University. If you require a Student visa, please be aware that you will not be able to study as a part-time student at undergraduate level.

When to apply

The University and Colleges Admissions Service (UCAS) accepts applications for full-time courses starting in September from one year before the start of the course. Our UCAS institution code is L68.

If you will be applying direct to the University you are advised to apply as early as possible as we will only be able to consider your application if there are places available on the course.

To find out when teaching for this degree will begin, as well as welcome week and any induction activities, view our academic term dates.

Are you from outside the UK? Find out how to apply from your home country

Find out more

News and success stories

Visit us

You may also like...