
Bluetooth Remote Control Car
CT3102 – Introduction to Robotics & IOT (Submitted 13 MAY 2020)

Introduction
This project is about building our own remote
controlled car. We have been given this case
study in order to gain an understanding of the
fundamentals of how electronics are made,
their functions and how communication occurs.

Starting with simple LEDs and (resistors to stop
them burning out); progressing through the
various components led to understanding of
more complex ones.

We learned that motors must be driven by DC
driver modules, that Bluetooth communication
can be achieved by use of the HC-05 module &
that the Arduino Uno “computer” can be used
to tie everything together into what resulted
into the fantastic robot car we have built, and
of course the C programming language used
to give the Uno our precise instructions.

Aims & Objectives
By the end of this projects we aim to have
gained understanding of the various
components used & code written.

We expect to have our robot cars fully
operational & remotely controlled using our
smartphone application.

Finally we expect to have a bit of fun too; this
way learning is greatly enhanced.

Components Used & Background
Below we’ve made a “component catalogue” of
what’s used to achieve our bluetooth robot car.
Note: Relevant partial descriptions are given.

 Arduino Uno is a
microcontroller
with digital i/o pins
that allow data to
be processed or
passed on to other
components.

 L9110s DUAL DC
Motor driver. This
literally “drives” the
motor, or in this
case two motors.
Apply power and
the motor spins.

 HC-05 Bluetooth
module. This chip can
send and receive
wireless data on the
bluetooth frequencies.
(2.402 to 2.480GHz)

 2WD Robot Car Chassis. Contains 3D
printed plastic parts, rubber wheels, a
switch, 4x1.5v AA Batteries (6V) PSU & 2 DC
motors. All other components have been
screwed into this chassis in appropriate
places for good weight distribution.

Hardware Design & Construction
To assemble the car follow these steps.

1. Firstly screw the Arduino Uno onto the
chassis along with the L9110s behind it,
ensuring to leave space for the 6V PSU. All
from the back to front of the car in a linear
fashion to ensure good weight distribution.

2. Next screw the motors onto the sides into
the matching 3D cut holes. Attach wheels
the wire motors to L9110s as shown in figure
1.4 (Top Right ⬈)

3. Then we are going to substitute the 4xAA
battery pack for a 5V USB power bank as
it’s easily recharged & a USB A to B cable
can power the Arduino Uno that using the
onboard USB Jack.

4. Finally add the wheels and tidy up the
cables so they don’t obstruct the wheels at
any point whilst moving.

5. Done. That’s it for the hardware design!

Note: Due to temporary university closure &
changing study environments we were unable
to provide as many diagrams & photos as
originally intended. Nevertheless, the hardware
build of this robot car was highly engaging and
we would recommend that anyone interested
in robotics & iot constructs one for themselves.

Figure 1.1 Figure 1.2 Figure 1.3 Figure 1.4

Acknowledgements
We highly appreciate Mr. Onadim for his
expertise in teaching us this module. Curiosity &
interest have never come so easy. Thank You.

Software Design & Development
Without code, the robot car would not meet the
aim’s & objectives as it would not be able to
handle bluetooth data, be controlled by a
smartphone or simple move at all.

We used the C/Arduino programming
language to achieve desired outcomes. Below
is the simplified version of the code.

void setup() { //Initial Setup, This Code Will Run Once at Start.
char BLData; // Set Bluetooth data char.
//Below - Set Pins for Motor Output, DV-Driving View
pinMode(9,OUTPUT); //FV, Left Wheel, Green Wire
pinMode(10,OUTPUT); //DV, Left Wheel, Yellow Wire
pinMode(11,OUTPUT); //FV, Right Wheel, Pink Wire
pinMode(12,OUTPUT); //DV, Right Wheel, Grey Wire
Serial.begin(9600); //Start serial communication
}

// We’ve written 5 working movement functions. Stopcar, Forwardscar,
Backwardscar, ClockwiseRotate, AntiClockwiseRotate. We show 2 of
them below to save space & avoid repetition. Full code in separate file.

void ClockwiseRotate() { void ForwardsCar() {
digitalWrite(9,LOW); digitalWrite(9,HIGH);
digitalWrite(10,HIGH); digitalWrite(10,HIGH);
digitalWrite(11,LOW); digitalWrite(11,HIGH);
digitalWrite(12,HIGH); digitalWrite(12,HIGH);

} }

void loop() { //Program Starts & Loops this section.
if (Serial.available()) //Checks for Bluetooth Serial
{

BLData=Serial.read(); //Reads for bluetooth information.
if (BLData=='A’)
forwardsCar();

else (BLData=='B')
backwardsCar();
else (BLData=='C')
ClockwiseRotate();
else (BLData=='D')
AntiClockwiseRotate();
else
stopCar();

}
}
// END OF CODE

We programmed our app to
send letters A,B,C & D from our
smartphones to the HC-05. This
information is then read by the
serial monitor and as per our
code, the various movement
functions are executed.

Android Human-Machine Interface
In order to send bluetooth data to our car (specifically
HC-05 module) we used a free pre-made application
called “Bluetooth Car” By keuwlsoft. Shown Below.

This was the most simple and effective design we came up
with. To support intended two hand use we placed the
forwards and backwards buttons on the far left side and
the rotating buttons on the right to correspond with hand
placement. This makes it easy for the user to control the
car without having to watch the screen carefully. We used
colorful buttons to further enhance this experience.

On a technical level, we instructed the apps to send the
char “A” whilst the red button is held. In this case, the car
moves forwards until the user lets go. This then makes the
car stop (else function). The other buttons send B,C & D
accordingly to the code on the  left.

Conclusion
All aims & objectives have been met, even the have fun
one. This project was successful and seeing the car move
for the first time was highly motivating. We have learned
very much about all that was taught and even ventured
into side projects like renaming the HC-05 module to
“Supercar”. Arduino code looks far more friendly now and
we have new practical skills learned whilst putting the
hardware together. The two most important things we
have learned is that of teamwork & troubleshooting. The
social talking loop is more important that the void loop.

	Page 1

